
Event-Driven Programming (I)

Ryan Eberhardt and Julio Ballista

May 27, 2021

Today

● Today: Can we do better than threads?

○ Introducing an alternative paradigm called “event-driven programming”

○ Event-driven programming alone has nothing to do with safety…

○ But it’s a really important technique that is hard to pull off well. Often leads

to complicated, error-prone designs

○ This week, will be talking about paradigms that make event-driven

programming easier to reason about

Review: Threads

● A “lightweight process”

○ Control: the routine (i.e. function) running inside of the thread

○ State: a stack, CPU registers, status (ready/running/blocked), etc.

● The OS manages threads
○ The scheduler is responsible for assigning threads to run on cores,

swapping them on and off as appropriate.

Review: Threads and the Scheduler

CPU:

Ready: Blocked:

Review: Threads

CPU:

Ready: Blocked:

Review: Threads

CPU:

Ready: Blocked:

Review: Threads

CPU:

Ready: Blocked:

Review: Threads

CPU:

Ready: Blocked:

Blocking syscalls

● Every thread runs for a “time slice” before the OS
switches to a different thread

● A thread will give up its time slice early if it is
“blocked,” needing to wait for something to
happen

○ I/O: reading and writing

○ Waiting: waitpid, sigsuspend, join, cv.wait(…)

etc.

○ lock()

○ sleep()

● This design is generally a good thing; getting off
the CPU allows other threads to do useful work

Blocked:

The Problem with Threads

● Context switching cost: When we use blocking functions within a thread, we
discard the rest of the CPU time slice and incur a cost on switching the thread to be
blocked.
○ Each switch is expensive! Virtual address space needs to get switched,

registers need to get restored, cache gets stepped on, etc
○ This is a big cost for high-performance situations (servers). If we have to block

on a client, maybe that thread could've done some other work instead.
● Memory overhead: If we have many threads, we consume a lot of memory

○ Each thread has its own stack space that needs to get managed by the OS.
Trying to have 5000 concurrent connections? 5000 threads = 5000 stack
segments = 40GB at 8MB/stack! (yike)

Review: Threads

CPU:

Finally, the CPU is mine at long last!

Review: Threads

CPU:

Finally, the CPU is mine at long last! The read() system call can block! (Network connection slow, malicious client, etc).

Review: Threads

CPU:

Nvm... Time to nap instead... The read() system call can block! (Network connection slow, malicious client, etc).

What if this thread could've just served another request while also waiting for this one?

Roadmap

Threads are great!

But we can’t have too many of them, and context
switches are expensive

Is there a way we can have concurrency with less
penalties?

Non-blocking I/O

● Traditionally, the read() sys call would block if there is more data to be read
but not available.

○ This causes the thread to get pulled off the CPU. It can’t do anything else

in the meantime.

● Instead, we could have read() return a special error value instead of blocking

○ If we see that a client hasn’t sent us anything yet, we can do other useful
work on this thread e.g. reading from other descriptors we’re managing.

● This allows us to have concurrent I/O with one thread!

Non-blocking I/O visualized

● Epoll is a kernel-provided mechanism that
notifies us of what fds are ready for I/O.

● Scenario: we are a server having
conversations with multiple clients at the
same time (a different fd is linked to each
client)

● Start by asking epoll, “in which
conversations has the client said
something?”

● read() from each of those file descriptors,
continue those conversations

● Rinse and repeat

State management

● This sort of code looks okay in theory, but
reality is much more complicated

● Key problem: need to figure out how to
manage the state associated with each
conversation

● Imagine trying to cook 10 dishes at the
same time. Need to remember…

○ how long each thing has been on the

stove

○ how long things have been in the oven

○ how long things have been marinating

for

○ what the next step is for each dish

“Executor Thread”

‼ ‼

State management

● Actual applications:

○ Was I waiting for the client to send me

something, or was I in the middle of sending
something to the client?

○ What was the client asking for before I got
distracted?

○ Alice the Client asked me for her emails, but I
needed to get them from Bob the Database.
Now Bob the Database responded with some
info, but I can’t remember what I was
supposed to do with it

● Managing one connection in each thread is easy
because each conversation is an independent train
of thought

● If we want to manage multiple connections in each
thread, we now have a lot of jumbled trains of
thoughts that we need to manage state for

“Executor Thread”

‼ ‼

Roadmap

Threads are great!

But we can’t have too many of them, and context
switches are expensive

Event driven programming is nice in theory, but
managing state seems hard

State management

● Rust (and a handful of other languages)
take state management to the next level

● Futures allow us to keep track of in-
progress operations along with
associated state, in one package

○ Think of a future as a helper friend

that oversees each operation,
remembering any associated state

FUTURE

cookMeat future

🔔 Attention!! 🔔

It’s been 4 minutes
since this meat started
cooking… Time to flip!

“Executor Thread”

Futures Visualized

“Executor Thread”

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Started cooking at
12:05, needs to cook
for 5 min… times up!

Started cooking at
12:05, needs to cook
for 5 min… times up!

⏰

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Started cooking at
12:05, needs to cook
for 5 min… times up!

Started cooking at
12:05, needs to cook
for 5 min… times up!

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Started cooking at
12:05, needs to cook
for 5 min… times up!

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Started cooking at
12:05, needs to cook
for 5 min… times up!

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

Futures Visualized

FUTUREFUTURE

FUTURE

Time’s up!

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Time’s up!

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Futures Visualized

FUTURE

FUTURE
Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

Futures Visualized

FUTURE

FUTUREAll done!

Executor thread
(sleeping) ⏰

All done!

⏰

Futures Visualized

FUTURE

FUTUREAll done!

All done!

⏰

Futures Visualized

FUTURE

All done!

⏰

Futures Visualized

FUTURE

All done!

Futures Visualized

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

● The executor thread should call poll() on the
future to start it off

● It will run code until it can no longer progress.

FUTURE

Executor thread

poll()

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread

poll()

🔥

Nothing more to do
right now, come back

later…

Poll::Pending

● If the future is complete, returns
Poll::Ready(T)

● If future needs to wait for some event,
returns Poll::Pending, and allows the single
thread to work on another future

● The executor thread should call poll() on the
future to start it off

● It will run code until it can no longer progress.

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread
(doing other things)🔥

● If the future is complete, returns
Poll::Ready(T)

● If future needs to wait for some event,
returns Poll::Pending, and allows the single
thread to work on another future

● The executor thread should call poll() on the
future to start it off

● It will run code until it can no longer progress.

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread
(sleeping)🔥

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread

🔥

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

poll()

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread

🔥

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

poll()

Nothing more to do
right now, come back

later…

Poll::Pending

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread
(sleeping)🔥

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread
(sleeping)🔥

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

poll()

🔥

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

poll()

Looks like it’s all
done!

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

FUTURE

Executor thread

● When poll() is called, Context structure passed in.

● Includes a “wake()” function that is set to be

called when future can make progress again (This
is implemented internally using system calls)

● After wake() called, executor can use Context to
see which Future can be polled to make new
progress

wake() ⏰

poll()

Looks like it’s all
done!

Poll::Ready()

Implementing futures: Futures all the way down

● Pretty much no one implements futures manually
(unless you’re a low level library implementor)

● Instead, futures are composed with various
combinators
let future = PlaceOnStoveFuture::new(meat)
 .then(|meat| CookOneSideFuture::new(meat))
 .then(|meat| FlipFuture::new(meat))
 .then(|meat| CookOneSideFuture::new(meat));

Executor thread

poll() One side cooked,
time to flip!FUTURE

future

FUTURE

PlaceOnStove

FUTURE

CookOneSide

FUTURE

Flip

FUTURE

CookOneSide

FlipFuture::poll()

https://docs.rs/futures/0.3.15/futures/future/index.html

Parallelism with futures

● We can submit multiple futures to the executor to run concurrently

● You can even write futures that depend on multiple concurrently-executing futures!

let cook_meal_future = futures::future::join_all(vec![
 CookMeatFuture::new(),
 CookMeatFuture::new(),
 CookSoupFuture::new(),
 BakeBreadFuture::new()
]);

Executor thread

poll() Two dishes done,
two to go…FUTURE

future

FUTURE

CookMeatCookSoup::poll()
BakeBread::poll()

FUTURE

CookMeat

FUTURE

CookSoup

FUTURE

BakeBread

● You can write code where the entire program is one huge future at the top level!

Parallelism with futures

FUTUREFUTURE

FUTURE

Time’s up!

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

⏰

● Because each future has self-contained state, we avoid the messy state
management issues commonly associated with event-driven programming

Roadmap

Threads are great!

But we can’t have too many of them, and context
switches are expensive

Event driven programming is nice in theory, but
managing state seems hard

Futures help us encapsulate state for each in-progress
operation, making event-driven programming cleaner
and more practical!

Questions?

How executors work

● An executor loops over futures that can currently make progress, calling poll() on them to
give them attention until they need to wait again

○ When no futures can make progress, the executor goes to sleep until one or more

futures calls wake()

○ Once awakened, the executor goes through those futures, poll()ing them

● A popular executor in the Rust ecosystem is Tokio and it’s what you’ll be using in Project 2!

● If you have multiple cores on your machine, you can actually execute futures truly in

parallel!

○ This means that if you have multiple futures running concurrently, you need to protect

shared data using synchronization primitives (although the ownership model kind of
already forces you to do this anyways)

What is an executor really doing?
What might happen if calling Poll() on a future
led to a sleep? (
- Calling read() with no data available?

Futures cannot Block!

● If code within a future causes the thread to sleep, the executor running that
code is going to sleep!

● Then it cannot continue to other futures! The joy of the system goes down the
drain!

● Asynchronous code needs to use non-blocking versions of everything,
including Mutexes, system calls that would normally block, or anything.

● Executor runtimes like Tokio provide these non-blocking implementations for
your favorite synchronization primitives.

Roadmap

Threads are great!

But we can’t have too many of them, and context switches
are expensive

Event driven programming is nice in theory, but managing
state seems hard

Futures help us encapsulate state for each in-progress
operation, making event-driven programming cleaner and
more practical!

Thursday: new syntax for making programming with futures
even easier

Additional Resources/References

● A great talk about how Rust arrived on the design for futures

● Another great talk about futures

● Phil Levis' CS110 Lecture on Events, Threads, and Async I/O

● The Rust Docs on Futures

● An article on futures

● John Ousterhout on why threads are a bad idea

● A great (and very accessible) Medium article explaining epoll (also has great

illustrations!)

● A CS242 Assignment on Implementing Futures

● Note: the syntax for futures has changed over time so some of these articles may

use outdated syntax — for the most up-to-date syntax, check out the docs.

https://www.youtube.com/watch?v=lJ3NC-R3gSI&feature=youtu.be
https://www.youtube.com/watch?v=NNwK5ZPAJCk
https://slides.com/philip_levis/lecture-19-events-threads#/
https://docs.rs/futures/0.3.5/futures/prelude/trait.Future.html
https://www.viget.com/articles/understanding-futures-in-rust-part-1/
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://medium.com/@copyconstruct/the-method-to-epolls-madness-d9d2d6378642
https://medium.com/@copyconstruct/the-method-to-epolls-madness-d9d2d6378642
http://cs242.stanford.edu/f19/assignments/assign7/#1-futures-40

