
Event-Driven Programming II

Ryan Eberhardt and Julio Ballista

June 1, 2021

Logistics

● You’re so close to the finish line!! 🏁 🏁

○ We’re so proud of everything you’ve learned this quarter, and we hope you

are as well!

● Please fill out the official course survey whenever you get a chance

○ This class has no departmental support and no certain future

○ If you felt that the material you learned this quarter was important for your

growth, please indicate this on the survey!

○ If you felt we could have done a better job, please help us improve!

Roadmap

Threads are great!

But we can’t have too many of them, and context switches
are expensive

Event driven programming is nice in theory, but managing
state seems hard

Futures help us encapsulate state for each in-progress
operation, making event-driven programming cleaner and
more practical!

Today: new syntax for making programming with futures
even easier

What are futures?

What are futures?

● Rust docs: “Futures are single eventual
values produced by asynchronous
computations.”

● You can think of a future as a helper
friend that oversees each operation,
remembering any associated state

FUTURE

cookMeat future

🔔 Attention!! 🔔

It’s been 4 minutes
since this meat started
cooking… Time to flip!

“Executor Thread”

Futures Visualized

“Executor Thread”

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Started cooking at
12:05, needs to cook
for 5 min… times up!

Started cooking at
12:05, needs to cook
for 5 min… times up!

⏰

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Started cooking at
12:05, needs to cook
for 5 min… times up!

Started cooking at
12:05, needs to cook
for 5 min… times up!

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Started cooking at
12:05, needs to cook
for 5 min… times up!

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Started cooking at
12:05, needs to cook
for 5 min… times up!

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Futures Visualized

FUTUREFUTURE

FUTURE

Started cooking at
12:00, needs to cook

for 30 min

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

Futures Visualized

FUTUREFUTURE

FUTURE

Time’s up!

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

⏰

Futures Visualized

FUTUREFUTURE

FUTURE

Time’s up!

Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Futures Visualized

FUTURE

FUTURE
Just flipped, need to
cook for 5 more min

Just flipped, need to
cook for 5 more min

Executor thread
(sleeping)

Futures Visualized

FUTURE

FUTUREAll done!

Executor thread
(sleeping) ⏰

All done!

⏰

Futures Visualized

FUTURE

FUTUREAll done!

All done!

⏰

Futures Visualized

FUTURE

All done!

⏰

Futures Visualized

FUTURE

All done!

Futures Visualized

Composition with futures

● Pretty much no one implements futures manually
(unless you’re a low level library implementor)

● Instead, futures are composed with various
combinators
let future = placeOnStove(meat)
 .then(|meat| cookOneSide(meat))
 .then(|meat| flip(meat))
 .then(|meat| cookOneSide(meat));

Executor thread

poll() One side cooked,
time to flip!FUTURE

future

FUTURE

PlaceOnStove

FUTURE

CookOneSide

FUTURE

Flip

FUTURE

CookOneSide

FlipFuture::poll()

https://docs.rs/futures/0.3.15/futures/future/index.html

Ergonomics of futures

Working with futures isn’t terribly ergonomic

● This code works

○ It’s certainly much better than manually dealing with callbacks and state

machines as you would in C/C++ with interfaces like epoll!

● But can we do better?

○ The syntax is a little clunky… It’s more typing than we’d like

○ Code quickly becomes much messier as complexity increases

○ Sharing mutable data (e.g. in local variables) can be painful: if there can only

be one mutable reference at a time, only one closure can touch that data!

let future = placeOnStove(meat)
 .then(|meat| cookOneSide(meat))
 .then(|meat| flip(meat))
 .then(|meat| cookOneSide(meat));

Poor ergonomics example

fn addToInbox(email_id: u64, recipient_id: u64) -> impl Future<Output=Result<(), Error>> {
 loadMessage(email_id)
 .and_then(|message| get_recipient(message, recipient_id))
 .map(|(message, recipient)| recipient.verifyHasSpace(&message))
 .and_then(|(message, recipient)| recipient.addToInbox(message))
}

Asynchronous
functions returning
Futures

Synchronous
(normal) function

Poor ergonomics example

fn addToInbox(email_id: u64, recipient_id: u64) -> impl Future<Output=Result<(), Error>> {
 loadMessage(email_id)
 .and_then(|message| get_recipient(message, recipient_id))
 .map(|(message, recipient)| recipient.verifyHasSpace(&message))
 .and_then(|(message, recipient)| recipient.addToInbox(message))
}

That’s a mouthful!

Poor ergonomics example

fn addToInbox(email_id: u64, recipient_id: u64) -> impl Future<Output=Result<(), Error>> {
 loadMessage(email_id)
 .and_then(|message| get_recipient(message, recipient_id))
 .map(|(message, recipient)| recipient.verifyHasSpace(&message))
 .and_then(|(message, recipient)| recipient.addToInbox(message))
}

Strange decomposition:
why does get_recipient
need to take a
Message?

(It doesn’t, but we need to pass it in order
to make this chain of futures work, since
the next futures need both the message
and recipient as input. This is bad
abstraction!)

Improved ergonomics with syntactic sugar

fn addToInbox(email_id: u64, recipient_id: u64)
 -> impl Future<Output=Result<(), Error>>
{
 loadMessage(email_id)
 .and_then(|message|
 get_recipient(message, recipient_id))
 .map(|(message, recipient)|
 recipient.verifyHasSpace(&message))
 .and_then(|(message, recipient)|
 recipient.addToInbox(message))
}

async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;

 let recipient = get_recipient(recipient_id).await?;

 recipient.verifyHasSpace(&message)?;

 recipient.addToInbox(message).await
}

normal function
usage!

● An async function is a function that returns a Future. (Any Futures used in the function are chained together by the
compiler.)

● .await waits for a future and gets its value

○ .await can only be called in an async fn or block

● Everything else is pretty much the same as what you’re used to!

● The compiler transforms this code into a Future with a poll() method that is just as efficient as what you could

implement by hand!

no wonky decomposition!

Asynchronous programming is now really accessible!

● Simple synchronous, threaded echo server:

use std::io::{Read, Write};
use std::net::TcpListener;
use std::thread;

fn main() {
 let listener = TcpListener::bind("127.0.0.1:8080").unwrap();

 loop {
 let (mut socket, _) = listener.accept().unwrap();

 thread::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).unwrap();
 socket.write_all(&buf[0..n]).unwrap();
 });
 }
}

Asynchronous programming is now really accessible!

● Convert any blocking functions to asynchronous versions (i.e. versions that
return Futures)

use std::io::{Read, Write};
use std::net::TcpListener;
use std::thread;

fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080")
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().unwrap();

 thread::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).unwrap();
 socket.write_all(&buf[0..n]).unwrap();
 });
 }
}

use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;

fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080")
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().unwrap();

 tokio::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).unwrap();
 socket.write_all(&buf[0..n]).unwrap();
 });
 }
}

Asynchronous programming is now really accessible!

● Now we have futures — need to .await them!

○ The compiler will complain if you forget

use std::io::{Read, Write};
use std::net::TcpListener;
use std::thread;

fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080")
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().unwrap();

 thread::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).unwrap();
 socket.write_all(&buf[0..n]).unwrap();
 });
 }
}

use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;

fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080").await
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().await
 .unwrap();

 tokio::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).await.unwrap();
 socket.write_all(&buf[0..n]).await.unwrap();
 });
 }
}

Asynchronous programming is now really accessible!

● You can only use .await in an async function or block

○ Compiler will also complain if you forget

use std::io::{Read, Write};
use std::net::TcpListener;
use std::thread;

fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080")
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().unwrap();

 thread::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).unwrap();
 socket.write_all(&buf[0..n]).unwrap();
 });
 }
}

use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;

async fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080").await
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().await
 .unwrap();

 tokio::spawn(async move {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).await.unwrap();
 socket.write_all(&buf[0..n]).await.unwrap();
 });
 }
}

Asynchronous programming is now really accessible!
● main() now returns a Future.

○ That’s fine, but Futures don’t actually do anything unless an executor executes them. Need to run main()
and submit the returned Future to the executor!

○ #[tokio::main] is a convenience macro that does this
use std::io::{Read, Write};
use std::net::TcpListener;
use std::thread;

fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080")
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().unwrap();

 thread::spawn(move || {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).unwrap();
 socket.write_all(&buf[0..n]).unwrap();
 });
 }
}

use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;

#[tokio::main]
async fn main() {
 let listener = TcpListener::bind(“127.0.0.1:8080").await
 .unwrap();

 loop {
 let (mut socket, _) = listener.accept().await
 .unwrap();

 tokio::spawn(async move {
 let mut buf = [0; 1024];
 let n = socket.read(&mut buf).await.unwrap();
 socket.write_all(&buf[0..n]).await.unwrap();
 });
 }
}

Async functions generate/return futures

● If you run this function, it will not actually
do any work with any messages!!

● This is still a function and you can still
run it…

● But its purpose is now to produce a
future that does the stuff that was
written inside the function

async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

FUTURE

FUTURE FUTURE FUTURE FUTURE

main()

please add x to inbox y

addToInbox()

say no more

Async functions generate/return futures

● If you run this function, it will not actually
do any work with any messages!!

● This is still a function and you can still
run it…

● But its purpose is now to produce a
future that does the stuff that was
written inside the function

async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

FUTURE

FUTURE FUTURE FUTURE FUTURE

main()

please add x to inbox y

addToInbox()

say no more

Executor thread

Async functions generate/return futures

● If you run this function, it will not actually
do any work with any messages!!

● This is still a function and you can still
run it…

● But its purpose is now to produce a
future that does the stuff that was
written inside the function

Executor thread

async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

FUTURE

FUTURE FUTURE FUTURE FUTURE

main()
addToInbox()

Now the email is added
to the inbox

How it compiles

● Async/await code looks similar to normal synchronous code, but…

● It’s completely different under the hood!

async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id)?;
 let recipient = get_recipient(recipient_id)?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message)
}

Normal, synchronous code stores variables on
the stack
If we need to wait, the OS switches to a different
thread with a different stack

addToInbox

get_recipient

make_db_request

Asynchronous functions return a Future. Any
state for the future must be self contained in the
future object
… so there isn’t a stack?

FUTURE

How it compiles
async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

enum AddToInboxState {
 NotYetStarted { email_id: u64, recipient_id: u64 },
 WaitingLoadMessage {
 recipient_id: u64, state: LoadMessageFuture },
 WaitingGetRecipient {
 message: Message, state: GetRecipientFuture },
 WaitingAddToInbox {
 state: AddToInboxFuture },
 Completed { result: Result<(), Error> },
}

● Looking at this code, there are 5 places
where we might be paused, not actively
executing:

○ Before anything has happened yet (i.e.

Future has been created but not yet
poll()ed)

○ await-ing for loadMessage

○ await-ing for get_recipient

○ await-ing for addToInbox

○ Future has completed

● We can use an enum to store the state for
these possibilities!

○ An enum compiles like a union type in C:

its size is equal to the largest size of its
variants. Maximally efficient in storage

FUTURE

How it compiles
async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

enum AddToInboxState {
 NotYetStarted { email_id: u64, recipient_id: u64 },
 WaitingLoadMessage {
 recipient_id: u64, state: LoadMessageFuture },
 WaitingGetRecipient {
 message: Message, state: GetRecipientFuture },
 WaitingAddToInbox {
 state: AddToInboxFuture },
 Completed { result: Result<(), Error> },
}

FUTURE

● How should we implement poll() for this
Future? We can look at the current state
and execute the appropriate code from
our async fn

How it compiles
async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

fn poll() {
 match self.state {
 NotYetStarted(email_id, recipient_id) => {
 let next_future = load_message(email_id);
 switch to WaitingLoadMessage state
 },
 WaitingLoadMessage(email_id, recipient_id, state) => {
 match state.poll() {
 Ready(message) => {
 let next_future = get_recipient(recipient_id);
 switch to WaitingGetRecipient state
 },
 Pending => return Pending,
 }
 },
 WaitingGetRecipient(message, recipient_id, state) => {
 match state.poll() {
 Ready(recipient) => {
 recipient.verifyHasSpace(&message)?;
 let next_future = recipient.addToInbox(message);
 switch to WaitingAddToInbox state
 },
 Pending => return Pending,
 }
 },
 ...

**Note: this poll() function is NOT how futures are actually implemented, but it is conceptually how things work. Futures are implemented in terms of a
feature called a generator; see here or here for more detailed explanation.

enum AddToInboxState {
 NotYetStarted { email_id: u64, recipient_id: u64 },
 WaitingLoadMessage {
 recipient_id: u64, state: LoadMessageFuture },
 WaitingGetRecipient {
 message: Message, state: GetRecipientFuture },
 WaitingAddToInbox {
 state: AddToInboxFuture },
 Completed { result: Result<(), Error> },
}

FUTURE

https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://www.youtube.com/watch?v=NNwK5ZPAJCk

Implications

● Async functions have no stack! (sometimes called “stackless coroutines”)

○ The executor thread still has a stack (used to run normal/synchronous functions), but it isn’t

used to store state when switching between async tasks. All state is self contained in the
generated Future

○ This makes debugging extremely wonky in many languages — how do you get a stack
trace if there is no stack?

■ Fortunately, with Rust’s nested futures, it isn’t hard; see here for details

● No recursion!

○ The Future returned by an async function needs to have a fixed size known at compile time

● Rust async functions are nearly optimal in terms of memory usage and allocations

○ There is extremely little overhead. The performance is as good as (or possibly better) what

you could get tuning everything by hand

https://fitzgeraldnick.com/2019/08/27/async-stacks-in-rust.html

When should I write async code?

● Taking a step back: What were the original problems we were trying to solve with
threads?

○ Memory usage from having so many stacks

○ Unnecessary context switching cost

● Async code makes sense when…

○ You need an extremely high degree of concurrency

■ Not as much reason to use async if you don’t have that many threads

○ Work is primarily I/O bound

■ Context switching overhead is expensive only if you’re using a tiny fraction of
the time slice

■ If you’re doing a lot of work on the CPU for an extended period of time, you
might prevent the executor from running other tasks

Similar tools in other languages

● Rust lets us write asynchronous code in the synchronous style that we’re
used to. This is becoming more common in many other languages

● Javascript: very similar toolbox with Promises and async/await. Involves
much more dynamic memory allocation, not as efficient

● Golang: “goroutines” are the asynchronous tasks, but unlike Rust they are not
stackless

○ They have resizable stacks. Possible because Go is garbage collected, so

the runtime knows where all pointers are and can reallocate memory

● C++20 just got stackless coroutines! Still lots of sharp edges, may want to

wait for more libraries to make this easier to use

General Tips for Async Rust

● Never block in async code!

○ Asynchronous tasks are cooperative (not preemptive)

● You can only use await in async functions.

● Rust won’t let you write async functions in traits (for technical reasons that

have to do with lifetimes and the fact that you can’t have associated type
bounds yet)

○ You can use a crate called async-trait though!

Additional Resources/References

● A great talk, high-level overview about how Rust arrived on the design for futures

● A great talk about how futures are implemented, how async/await works under the hood

● A blog post about how async/await is implemented

● Phil Levis' CS110 Lecture on Events, Threads, and Async I/O

● The Rust Docs on Futures

● An article on futures

● John Ousterhout on why threads are a bad idea

● A great (and very accessible) Medium article explaining epoll (also has great illustrations!)

● A CS242 Assignment on Implementing Futures

● Note: the syntax for futures has changed over time so some of these articles may use

outdated syntax — for the most up-to-date syntax, check out the docs.

https://www.youtube.com/watch?v=lJ3NC-R3gSI&feature=youtu.be
https://www.youtube.com/watch?v=NNwK5ZPAJCk
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://slides.com/philip_levis/lecture-19-events-threads#/
https://docs.rs/futures/0.3.5/futures/prelude/trait.Future.html
https://www.viget.com/articles/understanding-futures-in-rust-part-1/
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://medium.com/@copyconstruct/the-method-to-epolls-madness-d9d2d6378642
http://cs242.stanford.edu/f19/assignments/assign7/#1-futures-40

