
Lecture 1:
Introduction to Algorithms

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena


Topic: Course Mechanics



Syllabus / Course Mechanics

• Prerequisites (Data structures and linear algebra)

• Textbook (ADM third edition)

• Grading

• Homeworks

• Daily problems

• Exams

• Rules of the Game



1 Introduction to algorithms 1-27
2 Asymptotic notation 31-40
3 Logarithms and more 41-58 HW1 out
4 Elementary data structures 65-75
5 Dictionary data structures 76-92
6 Hashing 93-102
7 Applications of Sorting 109-114
8 Heapsort/Priority Queues 115-126 HW1 in / HW2out
9 Mergesort/Quicksort/Binsort 127-151

Midterm 1
10 Data structures for graphs 197-211
11 Breadth-first search 212-220 HW2 in / HW3 out
12 Topological sort/connectivity 221-234
13 Minimum spanning trees 243-256
14 Shortest paths 257-266
15 Exploiting graph algorithms 267-275
16 Combinatorial search 281-288 HW3 in / HW4 out
17 Program optimization 289-302
18 Elements of dynamic programming 307-325
19 Examples of dynamic programming 326-336
20 Limitations of dynamic programming 337-344 HW4 in / HW5 out
21 Dynamic programming review

Midterm 2
22 Reductions 355-360
23 Easy reductions 361-368
24 Harder reductions 369-372
25 The NP-completeness challenge 373-382 HW 5 in

Final Exam



Instructor Style Disclaimer

I try to make lectures fun through jokes and analogies, but
always fear saying something that may offend someone in
the class.
I am particularly fearful of teaching online, as I will miss
feedback mechanisms I am used to in the classroom.
I want everyone to feel comfortable in my classroom.
If anything I say bothers you, please come by and tell me so.
I will apologize, and then do my best to understand the issue
to avoid doing so again.



Questions?



Topic: What is an Algorithm?



What Is An Algorithm?

Algorithms are the ideas behind computer programs.
An algorithm is the thing which stays the same whether the
program is in assembly language running on a supercomputer
in New York or running on a cell phone in Kathmandu in
Python!
To be interesting, an algorithm has to solve a general,
specified problem.
An algorithmic problem is specified by describing the set of
instances it must work on, and what desired properties the
output must have.



Example Problem: Sorting

Input: A sequence of N numbers a1...an
Output: the permutation (reordering) of the input sequence
such as a1 ≤ a2 . . . ≤ an.

We seek algorithms which are correct and efficient.
A faster algorithm running on a slower computer will always
win for sufficiently large instances, as we shall see.
Usually, problems don’t have to get that large before the faster
algorithm wins.



Correctness

For any algorithm, we must prove that it always returns the
desired output for all legal instances of the problem.
For sorting, this means even if (1) the input is already sorted,
or (2) it contains repeated elements.
Algorithm correctness is not obvious in many optimization
problems!
Algorithms problems must be carefully specified to allow a
provably correct algorithm to exist. We can find the “shortest
tour” but not the “best tour”.



Expressing Algorithms

We need some way to express the sequence of steps
comprising an algorithm.
In order of increasing precision, we have English, pseu-
docode, and real programming languages. Unfortunately,
ease of expression moves in the reverse order.
I prefer to describe the ideas of an algorithm in English,
moving to pseudocode to clarify sufficiently tricky details of
the algorithm.



Questions?



Topic: Robot Tour Optimization



Robot Tour Optimization

Suppose you have a robot arm equipped with a tool, say a
soldering iron. To enable the robot arm to do a soldering job,
we must construct an ordering of the contact points, so the
robot visits (and solders) the points in order.
We seek the order which minimizes the testing time (i.e.
travel distance) it takes to assemble the circuit board.



Find the Shortest Robot Tour

You are given the job to program the robot arm. Give me an
algorithm to find the most efficient tour!



Nearest Neighbor Tour
A popular solution starts at some point p0 and then walks to
its nearest neighbor p1 first, then repeats from p1, etc. until
done.

Pick and visit an initial point p0
p = p0
i = 0
While there are still unvisited points

i = i + 1
Let pi be the closest unvisited point to pi−1
Visit pi

Return to p0 from pi



Nearest Neighbor Tour is Wrong!

3−5 11−1 10−21

−1 0 1 3 11
−21

−5

Starting from the leftmost point will not fix the problem.



Closest Pair Tour

Another idea is to repeatedly connect the closest pair of
points whose connection will not cause a cycle or a three-way
branch, until all points are in one tour.

Let n be the number of points in the set
For i = 1 to n− 1 do

d =∞
For each pair of endpoints (x, y) of partial paths

If dist(x, y) ≤ d then
xm = x, ym = y, d = dist(x, y)

Connect (xm, ym) by an edge
Connect the two endpoints by an edge.



Closest Pair Tour is Wrong!

Although it works correctly on the previous example, other
data causes trouble:

1 + ε

1 + ε

1 − ε1 − ε

(l)

1 + ε

1 − ε

1 + ε

1 − ε

(r)



A Correct Algorithm: Exhaustive Search

We could try all possible orderings of the points, then select
the one which minimizes the total length:

d =∞
For each of the n! permutations Πi of the n points

If (cost(Πi) ≤ d) then
d = cost(Πi) and Pmin = Πi

Return Pmin

Since all possible orderings are considered, we are guaranteed
to end up with the shortest possible tour.



Exhaustive Search is Slow!

Because it tries all n! permutations, it is much too slow to use
when there are more than 10-20 points.
No efficient, correct algorithm exists for the traveling
salesman problem, as we will see later.



Questions?



Topic: Movie Star Scheduling



Selecting the Right Jobs

A movie star wants to the select the maximum number of
staring roles such that no two jobs require his presence at the
same time.

Process Terminated

"Discrete" Mathematics
Halting State Programming Challenges

Calculated Bets

Tarjan of the Jungle

The President’s Algorist Steiner’s Tree

The Four Volume Problem



The Movie Star Scheduling Problem

Input: A set I of n intervals on the line.
Output: What is the largest subset of mutually non-
overlapping intervals which can be selected from I?
Give an algorithm to solve the problem!



Earliest Job First

Start working as soon as there is work available:

EarliestJobFirst(I)
Accept the earlest starting job j from I which
does not overlap any previously accepted job, and
repeat until no more such jobs remain.



Earliest Job First is Wrong!

The first job might be so long (War and Peace) that it prevents
us from taking any other job.



Shortest Job First

Always take the shortest possible job, so you spend the least
time working (and thus unavailable).

ShortestJobFirst(I)
While (I 6= ∅) do

Accept the shortest possible job j from I .
Delete j, and intervals which intersect j from I .



Shortest Job First is Wrong!

Taking the shortest job can prevent us from taking two longer
jobs which barely overlap it.



First Job to Complete

Take the job with the earliest completion date:

OptimalScheduling(I)
While (I 6= ∅) do

Accept job j with the earliest completion date.
Delete j, and whatever intersects j from I .



First Job to Complete is Optimal!

Proof: Other jobs may well have started before the first to
complete (say, x), but all must at least partially overlap both
x and each other.
Thus we can select at most one from the group.
The first these jobs to complete is x, so selecting any job but
x would only block out more opportunties after x.



Questions?



Topic: Proof and Counterexample



Demonstrating Incorrectness

Searching for counterexamples is the best way to disprove the
correctness of a heuristic.

• Think about all small examples.

• Think about examples with ties on your decision criteria
(e.g. pick the nearest point)

• Think about examples with extremes of big and small. . .



Induction and Recursion

Failure to find a counterexample to a given algorithm does
not mean “it is obvious” that the algorithm is correct.
Mathematical induction is a very useful method for proving
the correctness of recursive algorithms.
Recursion and induction are the same basic idea: (1) basis
case, (2) general assumption, (3) general case.

n∑
i=1

i = n(n + 1)/2



Questions?


