
Lecture 19:
Introduction to NP-Completeness

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena


Topic: Introduction to NP-Completeness



Reporting to the Boss

Suppose you fail to find a fast algorithm. What can you tell
your boss?

• “I guess I’m too dumb. . . ” (dangerous confession)

• “There is no fast algorithm!” (lower bound proof)

• “I can’t solve it, but no one else in the world can,
either. . . ” (NP-completeness reduction)



The Theory of NP-Completeness

Several times this semester we have encountered problems
for which we couldn’t find efficient algorithms, such as the
traveling salesman problem.
We also couldn’t prove exponential-time lower bounds for
these problems.
The theory of NP-completeness, developed by Stephen Cook
and Richard Karp, provides the tools to show that all of these
problems were really the same problem.



The Main Idea

Suppose I gave you the following algorithm to solve the
bandersnatch problem:

Bandersnatch(G)
Convert G to an instance of the Bo-billy problem Y .
Call the subroutine Bo-billy on Y to solve this instance.
Return the answer of Bo-billy(Y ) as the answer to G.

Such a translation from instances of one type of problem to
instances of another type such that answers are preserved is
called a reduction.



What Does this Imply?

Now suppose my reduction translates G to Y in O(P (n)):

1. If my Bo-billy subroutine ran in O(P ′(n)) I can solve the
Bandersnatch problem in O(P (n) + P ′(n′))

2. If I know that Ω(P ′(n)) is a lower-bound to compute
Bandersnatch, then Ω(P ′(n) − P (n′)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove problems
hard!



My Most Profound Tweet

An NP-completeness proof ensures that a dumb algorithm
that is slow isn’t a slow algorithm that is dumb.



Questions?



Topic: Problems and Reductions



What is a Problem?

A problem is a general question, with parameters for the input
and conditions on what is a satisfactory answer or solution.
Example: The Traveling Salesman
Problem: Given a weighted graph G, what tour {v1, v2, ..., vn}
minimizes ∑n−1

i=1 d[vi, vi+1] + d[vn, v1].



What is an Instance?

An instance is a problem with the input parameters specified.
TSP instance: d[v1, d2] = 10, d[v1, d3] = 5, d[v1, d4] = 9,
d[v2, d3] = 6, d[v2, d4] = 9, d[v3, d4] = 3

3

42

1

10
5

3

9

6

9

Solution: {v1, v2, v3, v4} cost= 27



Decision Problems

A problem with answers restricted to yes and no is called a
decision problem.
Most interesting optimization problems can be phrased
as decision problems which capture the essence of the
computation.
For convenience, from now on we will talk only about
decision problems.



The Traveling Salesman Decision Problem

Given a weighted graph G and integer k, does there exist a
traveling salesman tour with cost ≤ k?
Using binary search and the decision version of the problem
we can find the optimal TSP solution.



Reductions

Reducing (tranforming) one algorithm problem A to another
problem B is an argument that if you can figure out how to
solve B then you can solve A.
We showed that many algorithm problems are reducible to
sorting (e.g. element uniqueness, mode, etc.).
A computer scientist and an engineer wanted some tea. . .



Questions?


